Force#
Forced is defined with Newton’s Second Law for a nonrelativistic inertial reference frame as,
\[F \equiv ma\]
More general and appropriate is to write this in vectors and time differential dot notation,
\[ \boxed{\boldsymbol{F} = m\boldsymbol{\ddot r}} \]
Force in Polar Coordinate#
Force in polar coordinates uses \(\boldsymbol{a}\) in polar coordinates which is,
\[ a = -r\dot \phi^2 \boldsymbol{\hat r} + r\ddot \phi \boldsymbol{\hat \phi} \]
\[ a_\text{c} \equiv r\dot \phi^2 = r\omega^2, \qquad a_\perp \equiv r\ddot \phi = r\alpha\]
\[\boxed{\boldsymbol{F} = m\left[a_c \boldsymbol{\hat r} + a_\perp \boldsymbol{\hat \phi} \right]} \]
Preferably you may write it as,
\[ \boldsymbol{F} = m \langle \ddot r - r\dot\phi^2 , r\ddot\phi + 2\dot r \dot\phi \rangle \]
Force and Momentum#
Another form of the second law shows \(F\) in terms of momentum \(p\) given that mass is constant,
\[\begin{split}
\begin{align}
p &\equiv mv\\
\dot p &= ma
\end{align}
\end{split}\]
\[ \boxed{F = \dot p} \tag{$\dot m = 0$}\]