Half Spin#

Eigenvalue Relations#

\[ \begin{gather*} \hat S_n \ket{\uparrow_n} = \frac{\hbar}{2}\ket{\uparrow_n}, \qquad \hat S_n \ket{\downarrow_n} = -\frac{\hbar}{2}\ket{\downarrow_n} \end{gather*} \]

Spin States#

\[\begin{split} \begin{gather*} \ket{\uparrow_z} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \ket{\downarrow_z} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\\ \frac{1}{\sqrt{2}}\ket{\uparrow_x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \frac{1}{\sqrt{2}}\ket{\downarrow_x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\\ \frac{1}{\sqrt{2}}\ket{\uparrow_y} = \begin{pmatrix} 1 \\ i \end{pmatrix} \qquad \frac{1}{\sqrt{2}}\ket{\downarrow_y} = \begin{pmatrix} 1 \\ -i \end{pmatrix} \end{gather*} \end{split}\]

Spin Operators and Pauli Matrices#

\[\begin{split} \begin{gather*} \hat S_n = \frac{\hbar}{2}\sigma_n\\\\ \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{gather*} \end{split}\]

Arbritrary Spin States and Operators#

For an arbritrary direction \(\hat n = (\sin\theta \cos\phi, \sin\theta\sin\phi, \cos\theta)\),

\[\begin{split} \begin{gather*} \hat S_n = \frac{\hbar}{2}\begin{pmatrix} \cos\theta & \sin\theta^{i\phi} \\ \sin e^{i\phi} & -\cos\theta\\ \end{pmatrix}\\\\ \ket{\uparrow_n} = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\phi} \end{pmatrix} \qquad \ket{\downarrow_n} = \begin{pmatrix} -\sin \frac{\theta}{2}e^{i\phi} \\ \cos \frac{\theta}{2} \end{pmatrix} \end{gather*} \end{split}\]