Cosmological Redshift

Cosmological Redshift#

Recall that redshift \(z\) is defined as,

\[\begin{split} \begin{gather} z \equiv \frac{\Delta \lambda}{\lambda}\\ z + 1 = \frac{\lambda_o}{\lambda} \end{gather} \end{split}\]
  • \(\lambda\): emitted wavelength

  • \(\lambda_o\): observed wavelength

  • \(\Delta \lambda\): naturally, \(\Delta \lambda = \lambda_o - \lambda\)

The expansion of the universe preserves the quantity,

\[ \begin{equation} \frac{\lambda}{a} = \text{const} \end{equation} \]

One can imagine the wavelength of a photon is linearly proportional to the scale factor. This causes a cosmological redshift at the amount of,

\[\begin{split} \begin{gather} a(t) = \frac{1}{1+z}\\ \boxed{z(t) = \frac{1}{1 + a(t)}} \end{gather} \end{split}\]