Binomial#

The binomial distribution is given as,

\[ P(X=k; p,n) = {n \choose k} p^k(1-p)^k \]

Expected Value : $\( \mathbb E[X] = np \)$

Variance : $\( \text{Var}(X) = npq \)$

Moment Generating Function : The product of \(n\) Bernoulli MGF, $\( M_X(t) = (q+pe^t)^n \)$

Relations to Bernoulli Trials#

The bernoulli distribution is the indicator decomposition of the Binomial distribution by letting \(X\) be the binomial random variable that is the number of times the bernoulli trial succeeds:

\[\begin{split} I_k \sim \text{Bernoulli}(p)\\ X = \sum_{k=1}^n I_k \end{split}\]

Poisson Limit#

The poisson distribution can be derived by the limit of the binomial distribution as \(np\) tends to some constant \(\lambda\). Let \(np \rightarrow \lambda\) where \(n \rightarrow \infty\) and \(p \rightarrow 0\).

\[\begin{split} \begin{gather*} p_k = P(X=k) = {n \choose k}p^k(1-p)^{n-k}\\ p_0 \approx e^{-\lambda}\\ \frac{p_k}{p_{k-1}} \approx \frac{\lambda}{k}\\ p_k = p_0 \prod_{l=1}^k \frac{P_l}{P_{l-1}} \approx e^{-\lambda}\frac{\lambda^k}{k!} \end{gather*} \end{split}\]
\[ X \sim \text{Poisson}(k; np) \]

Hence you may interpret the Poisson distribution as the binomial distribution of a rare event in the limit of large number of trials.

Now there’s another limit where \(n \rightarrow \infty\) and \(p \rightarrow 1\) such that \(n(1-p) \rightarrow n-\lambda\). In this case, the proof is easier by solving “\(q\) failures from \(n\) trials”,

\[\begin{split} q_{l} := p_{k} \quad k + l = n\\ \end{split}\]
\[\begin{split} \begin{align*} q_l &= {n \choose l}q^l(1-q)^{n-l}\\ &\approx e^{-(n-\lambda)}\frac{(n-\lambda)^l}{l!} \end{align*} \end{split}\]
\[ p_k = e^{-(n-\lambda)}\frac{(n-\lambda)^{(n-k)}}{(n-k)!} \]
\[ \boxed{P(X=k) \approx \text{Poisson}(n-k;nq)} \]

Normal Limit of the Binomial Distribution#

Because the binomial distribution is \(n\) IID Bernoulli trials of chance \(p\), at large number of trials the central limit theorem applies such that distribution converges,

\[ X \to \text{Normal}(np,~ npq) \]