Kernel Perceptron#
Recall the perceptron update rule while there exist an \(y_i\) that’s misclassified:
\[
\theta(t+1) = \theta(t) + \alpha y_i \Phi(X_i)
\]
The kernel form only deals with a single parameter rather than the whole feature space,
\[
a_i(t+1) = a_i(t) + \epsilon y_i
\]
Notice that
\[
\Phi(X_i)^\top \theta = (\Phi(X)w)_i = (Ka)_i
\]
So,
\[
\hat y(z) = \theta^\top \Phi(z) = a^\top \Phi(X)\Phi(z) = \sum_{i=1}^n a_i k(X_i,z)
\]