Kernel Perceptron

Kernel Perceptron#

Recall the perceptron update rule while there exist an \(y_i\) that’s misclassified:

\[ \theta(t+1) = \theta(t) + \alpha y_i \Phi(X_i) \]

The kernel form only deals with a single parameter rather than the whole feature space,

\[ a_i(t+1) = a_i(t) + \epsilon y_i \]

Notice that

\[ \Phi(X_i)^\top \theta = (\Phi(X)w)_i = (Ka)_i \]

So,

\[ \hat y(z) = \theta^\top \Phi(z) = a^\top \Phi(X)\Phi(z) = \sum_{i=1}^n a_i k(X_i,z) \]