Non-linear Classificaton#
Parabolic Transformations#
This section is for kernel that follow parabolic functions (i.e., shapes that are conic or in general quadric).
Ellipsoid and Hyperboloid#
The polynomial draws a ellipsoid or hyperboloid plane in \(\mathbb R^d\).
If the principle axis of the plane are aligned with the coorindate axis then the polynomial is without the cross-terms where \(\Phi: \mathbb R^d \rightarrow \mathbb R^{2d}\),
\[\begin{split}
\Phi(X_i) = \begin{bmatrix}
X_i^{2}\\
X_i
\end{bmatrix}
\end{split}\]
If the planes aren’t axis-aligned then (\(\Phi : \mathbb R^d \rightarrow \mathbb R^\frac{d^2 + 3d}{2}\)),
\[\begin{split}
\Phi(X_i) = \begin{bmatrix}
X_i^{2}\\
X_iX_{j\neq i}\\
X_i
\end{bmatrix}
\end{split}\]