Quadratic Discriminant Analysis#
Gaussian#
Let the multivariate gaussian be,
\[
P(x \mid \mu, \sigma) = \left(2 \pi \sigma^2 \right)^{d/2} \exp\left(-\frac{|x-\mu|^2}{2\sigma^2}\right)
\]
Let the \(N\) classes be represented as \(c \in \{1,2,\ldots,N\}\) such that each class has the following statistics:
\(\mu_c\) : Mean of the class
\(\sigma_c\) : Standard deviation of the class
\(\pi_c\) : Prior of the class
The optimization problem can be simplified using logarithm to preserve maximization of the Bayes decision,
\[\begin{split}
\begin{align*}
\hat y(x) &= \mathop{\arg\max}_c \log\left( (2\pi)^{d/2} P(x \mid \mu, \sigma) \pi_c \right) \\
&= \mathop{\arg\max}_c \frac{|x-\mu_c|^2}{2\sigma_c^2} - d\log{\sigma_c} + \log{\pi_c}
\end{align*}
\end{split}\]
General Quadratic Function#
For some quadratic function \(Q(x)\), the Bayes decision rule is given by,
\[
\hat y(x) = \mathop{\arg\max}_c Q_c(x)
\]
The Bayes decision rule for the quadratic discriminant always product a posterior distribution that is a logistic function. We can easily see this by considering only two classes \((A,B)\).
\[\begin{split}
\hat y(x) = \begin{cases}
A & Q_A(x) - Q_B(x) > 0 \\
B & \text{otherwise}
\end{cases}
\end{split}\]
\[\begin{split}
\begin{align*}
P(Y \mid X) &= \frac{e^{Q_A(x)}}{e^{Q_A(x)} + e^{Q_B(x)}}\\
&= \frac{1}{1 + e^{Q_A(x) - Q_B(x)}}
\end{align*}
\end{split}\]