Bias Variance Tradeoff

Bias Variance Tradeoff#

Bias : Error due in the hypothesis or model to fit the data.

Variance : Error due to fitting random noise in the data. How the model varies with different training set.

Bias Variance Decomposition#

\[ y = y^* + \epsilon \]
\[\begin{split} \begin{align*} E\big[ L(y, \hat y) \big] &= E\big[ (y - \hat y)^2 \big]\\ &= \left(E\big[ \hat y \big] - y^*\right)^2 + \text{Var}\big[ \hat y \big] + \text{Var}\big[ y \big] \end{align*} \end{split}\]
  • Bias

  • Variance

  • Irreducible Error