Central Limit Theorem#
The Central Limit Theorem (CLT) states that given a sum distribution \(S_n\) as a sum of \(n\) iid random variables \(X\) of mean \(\mu\) and standard deviation \(\sigma\),
\[\begin{split}
\begin{gather*}
S_n = X_1 + X_2 + \ldots + X_n\\
E(X_n) = n\mu\\
\text{SD}(X_n) = \sqrt{n}\sigma
\end{gather*}
\end{split}\]
As \(n \to \infty\), \(S_n\) approaches normal distribution.
\[
S_n \to \text{Normal}(N\mu, N\sigma^2)
\]
Concentration Corollary : Since the distribution of the sum tends to normal at large \(N\), its CDF as well,
$$
\begin{gather*}
P(S_n \le s) \approx \Phi\left(\frac{s-N\mu}{\sqrt{N}\sigma}\right)
\end{gather*}
$$
More used is the central bulk concentration,
$$
\begin{align*}
P(\abs{S_n - N\mu} \le c) &= P(S_n \le N\mu + c) - P(S_n \le N\mu - c)\\
&\approx \Phi\left(\frac{c}{\sqrt{N}\sigma}\right) - \Phi\left(\frac{c-2N\mu}{\sqrt{N}\sigma}\right)
\end{align*}
$$